Metrum Research GroupによるSTANの入門コース

Metrum Research Groupから昨日、STANの入門コースの教材がアップロードされました*1。Metrumは、STANをPharmacometricsに適用するため積極的に開発に携わっています。今回公開されたものは、昨年度のPAGE/ACoP meetingで開催された Getting Started with Bayesian PKPD Modeling Using Stan: Practical use of Stan & R for PKPD applications というワークショップが元になっており、基礎的なSTANの使用法に重点が置かれています。 コードや解説PDFに加え、実際にコードを動かすチュートリアルもYouTubeにアップロードされています。英語に抵抗の無い方はこのブログより百倍ためになると思うので、ご覧になることをおすすめします。

metrumrg.com

以下に簡単にコース内容をまとめてみました。番号はアップロードされている動画の番号に(おおよそ)対応しています。特に既にStanに触ったことのある方は、興味がある場所から見てみて下さい。

  1. ベイズ統計・統計モデリングの基本
  2. Stanの紹介・インストール・linear regressionを用いた簡単なデモ
  3. 単純なPK-PDモデル(Emaxモデル)を用いた非線形回帰*2と階層モデル(試験間差)への拡張
  4. 個人間差を考慮したPK-PDモデル(Emaxモデル)
  5. User-defined functionとそれを用いたPopulation PK解析*3
  6. 5.の続きとCensored dataに対する尤度計算法(解説のみ)

Population PK解析で用いているコンパートメントモデルには、このチュートリアルでも解析解を用いており、数値的にODE(常微分方程式)は解いていません。とはいえ、僕の書いた様な簡易型のものではなく、しっかりとNONMEM形式のデータに対応することを意識して書かれています。ODEの数値解法*4についてカバーされていなかったのは残念ですが、今年のPAGE/ACoPでMetrumが開催するワークショップでカバーするようなので楽しみです。

*1:この分野にいる人はご存知だと思いますが、Metrumはこれに限らず幅広いトピックに関する教材をCreative Commonsライセンスの元で公開しています。

*2:いきなりODEを解く必要があるPOPPKから入るのではなく、Emaxモデルから入るのは上手いですね。

*3:そういえばこのチュートリアルではlabel switchingの話をしていないのですが、どうやって回避したのか気になります。データを上手く作ったのか、或いは僕の作成したデータがたまたま上手くいかない例だったのでしょうか。。

*4:Torstenという名前のサブモジュールが開発中のようです